Sums of three integral squares in biquadratic fields

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Sums of Three Squares

(1) r3(n) = 4πn S3(n), where the singular series S3(n) is given by (16) with Q = ∞. While in principle this exact formula can be used to answer almost any question concerning r3(n), the ensuing calculations can be tricky because of the slow convergence of the singular series S3(n). Thus, one often sidesteps (1) and attacks problems involving r3(n) directly. For example, concerning the mean valu...

متن کامل

Sums of Squares over Totally Real Fields Are Rational Sums of Squares

Let K be a totally real number field with Galois closure L. We prove that if f ∈ Q[x1, . . . , xn] is a sum of m squares in K[x1, . . . , xn], then f is a sum of 4m · 2[L:Q]+1 ([L : Q] + 1 2 ) squares in Q[x1, . . . , xn]. Moreover, our argument is constructive and generalizes to the case of commutative K-algebras. This result gives a partial resolution to a question of Sturmfels on the algebra...

متن کامل

Sums of Three Squares in Function Fields of Conics and Cassels–catalan Curves

We show that a function field in one variable of genus zero has pythagoras number two if and only if either the base field is hereditarily pythagorean and, in case the function field is nonreal, uniquely ordered, or −1 is a square in the base field. We generalize one implication to function fields of Cassels-Catalan curves.

متن کامل

Sums of Squares in Function Fields of Quadrics and Conics

For a quadric Q over a real field k, we investigate whether finiteness of the Pythagoras number of the function field k(Q) implies the existence of a uniform bound on the Pythagoras numbers of all finite extensions of k. We give a positive answer if the quadratic form that defines Q is weakly isotropic. In the case where Q is a conic, we show that the Pythagoras number of k(Q) is 2 only if k is...

متن کامل

Some Non-analytic-hypoelliptic Sums of Squares of Vector Fields

Certain second-order partial differential operators, which are expressed as sums of squares of real-analytic vector fields in R3 and which are well known to be C hypoelliptic, fail to be analytic hypoelliptic.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2014

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2013.11.013